Kir6.2 Variant E23K Increases ATP-Sensitive K+ Channel Activity and Is Associated With Impaired Insulin Release and Enhanced Insulin Sensitivity in Adults With Normal Glucose Tolerance

نویسندگان

  • Dennis T. Villareal
  • Joseph C. Koster
  • Heather Robertson
  • Alejandro Akrouh
  • Kazuaki Miyake
  • Graeme I. Bell
  • Bruce W. Patterson
  • Colin G. Nichols
  • Kenneth S. Polonsky
چکیده

OBJECTIVE The E23K variant in the Kir6.2 subunit of the ATP-sensitive K(+) channel (K(ATP) channel) is associated with increased risk of type 2 diabetes. The present study was undertaken to increase our understanding of the mechanisms responsible. To avoid confounding effects of hyperglycemia, insulin secretion and action were studied in subjects with the variant who had normal glucose tolerance. RESEARCH DESIGN AND METHODS Nine subjects with the E23K genotype K/K and nine matched subjects with the E/E genotype underwent 5-h oral glucose tolerance tests (OGTTs), graded glucose infusion, and hyperinsulinemic-euglycemic clamp with stable-isotope-labeled tracer infusions to assess insulin secretion, action, and clearance. A total of 461 volunteers consecutively genotyped for the E23K variant also underwent OGTTs. Functional studies of the wild-type and E23K variant potassium channels were conducted. RESULTS Insulin secretory responses to oral and intravenous glucose were reduced by approximately 40% in glucose-tolerant subjects homozygous for E23K. Normal glucose tolerance with reduced insulin secretion suggests a change in insulin sensitivity. The hyperinsulinemic-euglycemic clamp revealed that hepatic insulin sensitivity is approximately 40% greater in subjects with the E23K variant, and these subjects demonstrate increased insulin sensitivity after oral glucose. The reconstituted E23K channels confirm reduced sensitivity to inhibitory ATP and increase in open probability, a direct molecular explanation for reduced insulin secretion. CONCLUSIONS The E23K variant leads to overactivity of the K(ATP) channel, resulting in reduced insulin secretion. Initially, insulin sensitivity is enhanced, thereby maintaining normal glucose tolerance. Presumably, over time, as insulin secretion falls further or insulin resistance develops, glucose levels rise resulting in type 2 diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brief Genetics Report The E23K Variant of Kir6.2 Associates With Impaired Post–OGTT Serum Insulin Response and Increased Risk of Type 2 Diabetes

The E23K polymorphism of the pancreatic -cell ATPsensitive K (KATP) channel subunit Kir6.2 (KCNJ11) is associated with type 2 diabetes in whites, and a recent in vitro study of the E23K variant suggests that the association to diabetes might be explained by a slight inhibition of serum insulin release. In a study comprising 519 unrelated glucose-tolerant subjects, we addressed the question as t...

متن کامل

ATP-sensitive K+ channel-mediated glucose uptake is independent of IRS-1/phosphatidylinositol 3-kinase signaling.

We previously found that disruption of Kir6.2-containing ATP-sensitive K+ (KATP) channels increases glucose uptake in skeletal muscle, but the mechanism is not clear. In the present study, we generated knockout mice lacking both Kir6.2 and insulin receptor substrate-1 (IRS-1). Because IRS-1 is the major substrate of insulin receptor kinase, we expected disruption of the IRS-1 gene to reduce glu...

متن کامل

ATP-sensitive K+ channel signaling in glucokinase-deficient diabetes.

As the rate-limiting controller of glucose metabolism, glucokinase represents the primary beta-cell "glucose sensor." Inactivation of both glucokinase (GK) alleles results in permanent neonatal diabetes; inactivation of a single allele causes maturity-onset diabetes of the young type 2 (MODY-2). Similarly, mice lacking both alleles (GK(-/-)) exhibit severe neonatal diabetes and die within a wee...

متن کامل

Impact of Kir6.2 E23K polymorphism on the development of type 2 diabetes in a general Japanese population: The Hisayama Study.

OBJECTIVE The association between the E23K polymorphism of ATP-sensitive K(+) channel subunit Kir6.2 and diabetes has been reported in Caucasians but not in Asians. We examined this issue in follow-up and cross-sectional studies in a general Japanese population. RESEARCH DESIGN AND METHODS In a 14-year follow-up study of 976 subjects aged 40-79 years with normal glucose tolerance (NGT), we in...

متن کامل

Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region.

The genes for the sulfonylurea receptor (SUR1; encoded by ABCC8) and its associated islet ATP-sensitive potassium channel (Kir6.2; encoded by KCNJ11) are adjacent to one another on human chromosome 11. Multiple studies have reported association of the E23K variant of Kir6.2 with risk of type 2 diabetes. Whether and how E23K itself-or other variant(s) in either of these two closely linked genes-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2009